Modular categories from finite crossed modules
نویسندگان
چکیده
منابع مشابه
Crossed Modules and Quantum Groups in Braided Categories
Let A be a Hopf algebra in a braided category C. Crossed modules over A are introduced and studied as objects with both module and comodule structures satisfying a compatibility condition. The category DY (C)AA of crossed modules is braided and is a concrete realization of a known general construction of a double or center of a monoidal category. For a quantum braided group (A,A,R) the correspo...
متن کاملMaking nontrivially associated modular categories from finite groups
We show that the double of the nontrivially associated tensor category constructed from left coset representatives of a subgroup of a finite group X is a modular category. Also we give a definition of the character of an object in this category as an element of a braided Hopf algebra in the category. This definition is shown to be adjoint invariant and multiplicative on tensor products. A detai...
متن کاملThe category of generalized crossed modules
In the definition of a crossed module $(T,G,rho)$, the actions of the group $T$ and $G$ on themselves are given by conjugation. In this paper, we consider these actions to be arbitrary and thus generalize the concept of ordinary crossed module. Therefore, we get the category ${bf GCM}$, of all generalized crossed modules and generalized crossed module morphisms between them, and investigate som...
متن کاملBraids and crossed modules
For n ≥ 4, we describe Artin’s braid group on n strings as a crossed module over itself. In particular, we interpret the braid relations as crossed module structure relations. Subject classification: Primary: 20F36 57M05 57M20 57M25; Secondary: 18D50 18G55 20C08 55P48
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Pure and Applied Algebra
سال: 2011
ISSN: 0022-4049
DOI: 10.1016/j.jpaa.2010.12.010